国家公务员考试网 地方站: 武汉 黄石 襄阳 荆门 宜昌 黄冈 鄂州 十堰 孝感 荆州 更多
您的当前位置:湖北公务员考试网首页 >> 行测资料 >> 数量

教你几招做湖北公务员考试数学运算的“神算手”

Tag: 湖北公务员公务员考试数学运算 2014-07-18    来源:湖北公务员考试网 字号: T | T | T 我要提问我要提问
  数学运算是湖北公务员考试中绝大部分考生花费时间长、正确率低的一个部分,而时间和正确率往往取决于解题方法是否简便、有效。针对考生反映的“题量太大,做不完”、“读完题无思路”、“计算量太大,算到最后也不一定对”等一系列理科方面的问题,2015年湖北公务员考试提前复习教材编写组结合真题告诉众考生如何在湖北公务员考试数学运算部分中走“捷径”,成为“神算手”。
  首先,必须掌握数学运算中的常考考点。近两年的考点分布较为稳定,主要有以下12种题型:整数特性、平均数、数列问题、几何问题、和差倍比问题、行程问题、工程问题、容斥问题、排列组合及概率问题、数据分析、推理问题。
  其次,要在计算速度上有较大的突破,尽量做到使计算简便,甚至无需通过计算便可得出结果。针对以上考点现总结基本方法如下:
  一、特值法
  所谓特值法,就是在某一范围内取一个特殊值,将繁杂的问题简单化,这对于解有关不需整个解题思维过程的客观题十分有效。我们常常会用到特殊值、特殊数列、特殊函数、特殊点、特殊方程等方法来找到特殊值,直接带入,或者考察特例、检验特例、举反例等等,总之就是把这个题目用特殊的问题进行检验,然后进行猜想,这是特殊化猜想。
  例题:某村的一块试验田,去年种植普通水稻,今年该试验田的1/3种上超级水稻,收割时发现该试验田的水稻总产量是去年总产量的1.5倍。如果普通水稻的产量不变,则超级水稻的平均产量与普通水稻的平均产量之比是:
  A.5:2     B.4:3      C.3:1      D.2:1
  解析:取特殊值。设普通水稻的产量是1,则去年的总产量是1,今年的总产量就是1.5,今年普通水稻产量为2/3,超级水稻产量为1.5-2/3,而超级水稻只占1/3,所以如果都种超级水稻的产量就是3×(1.5-2/3),那么超级水稻的平均产量与普通水稻的平均产量之比是3×(1.5-2/3):1=2.5:1=5:2。所以选A。
  二、归纳法
  数学归纳法也是解决数学运算问题的一个基本的方法,它是一种从已知条件入手,通过分析简单情况,归纳出解决此类题的规律的一种方法,对于解决那些不容易入手或表述复杂的问题十分有效。注意,这种方法只是猜测而不是证明,有时候可能会得出不正确的答案,需要大家注意多加验证。
  数学思想剖析:以上两种方法数学思想依据是猜证结合思想。很多时候,有些题目好像可以直接得到答案,可是写出解题过程却不那么容易,这时候我们可以对问题做出大胆的猜想,然后根据已知来证明猜想的正确性,这就是猜证结合思想。在公务员行测考试中,我们常常用特值法、归纳法这两种方法来提出猜想,然后用综合法、分析法、穷举法、反证法等四种方法来证明我们提出的猜想。
  三、推导法
  我们处理事情或是解题的习惯思维是从事情的起始状态,根据将要发生的变化,推断结束时的状态;递推法是利用问题本身所具有的一种递推关系求解问题的一种方法。用递推法解题,首先是要列出符合题意的递归关系式--递归方程,再解方程。通常办法是按某一元素(或位置)或某一方式进行分类讨论,从而得出问题间的递推关系。
  四、分合法
  分合法主要包括分类讨论法和分步讨论法两种。在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。而分步讨论法则是指有时候有些问题我们一步是无法解决的,此时需要把问题进行分步,按步骤一步一步地解决。
  数学思想剖析:分合法数学思想依据是分合思想。在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。同时,有时候有些问题我们一步是无法解决的,此时需要把问题进行分步,按步骤一步一步地解决,这就是分步讨论法。分步思想也是一种重要的解题策略,它使大家把未知的问题转化成一个个简单的问题,体现了化复杂为简单的思想与分步整理的方法。分合思想除了常用的分类讨论法、分步讨论法,还包括整体解决法和直解法。
  五、方程法
  方程法是指将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式,通过求解未知数的值,来解应用题的方法。方程法应用较为广泛,公务员考试数学运算部分有相当一部分的题目都可以通过方程法来求解。应用广泛,思维要求不高,易于理解掌握。
  上述数学运算常用解题方法及其数学思想剖析的介绍,不仅运用相应真题从理论上对每种解题方法做了总结,而且就解题方法的思想依据也做了深入剖析,深入浅出,有很强的针对性和适用性,希望能够帮助考生做到有的放矢,对数学运算常考的几种题型有一个明确的把握,对解题方法能合理有效的运用,对目前数学运算考试题型及解题方法在头脑中建立数学运算的知识体系,在短时间内提高应对同类型试题的能力。从根本上走出数学运算耗时但低分的困境。

  阅读此文的人还阅读了
  湖北公务员考试数学运算中的秒杀技巧

更多
RSS Tags
返回网页顶部
CopyRight 2013 http://www.hbgwy.org/ All Rights Reserved 苏ICP备11038242号-12
(任何引用或转载本站内容及样式须注明版权)XML